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Introduction

We calculate the entropy production in a multicomponent fluid, allowing for chemical
reactions and external forces that are species specific. Equations for balance of the mass
of each species, energy, momentum, and entropy production are first formulated as integral
equations for an arbitrary volume V with external area A and then reduced to differential
equations. The treatment is rather standard insofar as the balance equations are concerned
and follows closely the developments of Bird, Stewart and Lightfoot (BSL) [1] and Fitts [2].
BSL do not, however, give explicit expressions for the entropy production, although they
appeal to the literature (see footnote on page 565 of [1]) in connection with the formulation
of constitutive equations for the fluxes. Our treatment of entropy production is much more
explicit, and extends the work of Sekerka and Mullins [3] along lines developed by Sekerka
in unpublished notes written in August 1991 at a summer workshop in Aspen. Specifically,
external forces and chemical reactions are now allowed.

We also offer an identification of the energy flux that seems to be more self consistent
with the entropy flux and with the work done by pressure in a multicomponent system.
Based on this flux identification, we are able to make direct contact with the “second-law
heat flux” of Fitts [2], page 28, without defining a separate heat flux, “not associated
with the flow of matter, ” for the first law of thermodynamics, as does Fitts[2], page 27.
We also make contact with the total energy flux in a multicomponent solution given by
BSL [1], page 566. We are led finally to results that are in agreement with expressions for
the entropy production of a multicomponent system by Fitts [2], page 31, and de Groot
and Mazur [4], pages 26-27, and for a binary fluid system by Landau and Lifshitz [5], page
222.

Furthermore, in the case for which the external forces can be can be expressed as
gradients of potential functions that are independent of time, we are able to demonstrate
that total chemical potentials, which are intrinsic chemical potentials augmented by the
external potentials corresponding to the external forces, appear as conjugate variables to
the fluxes; however, only the intrinsic chemical potentials appear as conjugate variables to
the chemical reaction rates. For the case in which the external potentials are independent of
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species, as would be the case for gravity, the augmentation of the chemical potentials makes
no net contribution to the entropy production. Therefore, for gravity as the only external
force, the fluxes can be written in terms of the gradients of only the intrinsic chemical
potentials. Nevertheless, we show in this case that the dependence of these chemical
potentials on pressure leads to an implicit dependence of the fluxes on the gravitational
potential, and with the aid of the Gibbs-Duhem equation, this dependence can be shown to
lead to the well-known equilibrium condition that the gravitationally augmented chemical
potentials are uniform at equilibrium.

Our general approach in the sections below is to write a balance equation for an arbi-
trary extensive quantity U of the following form:

(time rate of change of U in volume V) + (flux of U out of V through A)
= (rate of production of U in V)

Subscripts v and m will be used to denote quantities per unit volume and unit mass,
respectively, whereas subscripts such as i, j, k = 1, . . . , κ will be used to denote chemical
species.

1 Mass Balances

The equation for balance of the mass of the ith species of partial density ρi may be written
in the form

d

dt

∫
V

ρi d
3x +

∫
A

ρivi · n̂ d2x =
∫
V

ri d
3x (1)

where vi is the local velocity of the ith species, n̂ is the unit outward normal to V , and ri is
the volumetric rate of production of mass of the ith species by means of chemical reaction.
For fixed V , we can take the time derivative inside the integral as a partial derivative. If
we then convert the surface integral to a volume integral by the divergence theorem and
recognize that the volume V is arbitrary, we can equate the integrands and write

∂ρi

∂t
+∇ · (ρivi) = ri. (2)

We introduce the total density ρ =
∑κ

i=1 ρi, the barycentric velocity (velocity of the local
center of mass) v =

∑κ
i=1 ρivi/ρ, and the diffusive fluxes (mass flux of each species with

respect to the local center of mass)

ji := ρi(vi − v) (3)

so that the total mass fluxes
Ji := ρivi = ρiv + ji. (4)

Then Eq(2) may be written in the forms

∂ρi

∂t
+∇ · Ji = ri (5)
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∂ρi

∂t
+∇ · (ρiv + ji) = ri (6)

Dρi

Dt
+ ρi∇ · v +∇ · ji = ri (7)

where
D
Dt

:=
∂

∂t
+ v · ∇ (8)

is the substantial derivative.
From Eq(3) and the definition of v, we see that

κ∑
i=1

ji = 0. (9)

Moreover, total mass is conserved by chemical reactions, so that

κ∑
i=1

ri = 0. (10)

Consequently we can sum Eq(6) and Eq(7) over all chemical species to obtain

∂ρ

∂t
+∇ · (ρv) = 0 (11)

Dρ

Dt
+ ρ∇ · v = 0 (12)

which are familiar forms of the continuity equation.
Later, we shall make use of the following: Let A denote an arbitrary quantity. Then

∂(ρA)

∂t
+∇ · (ρAv) = ρ

∂A

∂t
+ ρv · ∇A

= ρ
DA

Dt
(13)

where Eq(11) has been used. If we apply Eq(13) with A = vm := 1/ρ, the specific volume,
we obtain

ρ
Dvm

Dt
= ∇ · v, (14)

which illustrates the familiar interpretation of the divergence of v as a volumetric source.
If we apply Eq(13) to Eq(6), with A = ωi := ρi/ρ, the mass fraction of the ith component,
we obtain

ρ
Dωi

Dt
+∇ · ji = ri. (15)
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2 Momentum Balance

We write the equation for momentum balance in the form

d

dt

∫
V

ρv d3x +
∫
A

ρvv · n̂ d2x = −
∫
A

m̌ · n̂ d2x +
∫
V

κ∑
i=1

ρigi d
3x (16)

where the tensor ρvv is the momentum flux due to fluid transport across the area A and

m̌ = τ̌ + p1̌ (17)

is a symmetric stress tensor, equal to the sum of the symmetric viscous stress tensor τ̌ and
a diagonal tensor that is the product of the thermodynamic pressure and the unit tensor
1̌. The term containing m̌ · n̂ can either be viewed as a force that acts through the area
A or as a flux (into V) of momentum related to surface forces. (Our m̌ is the same as the
tensor Π̌ of BSL [1] or the negative of the tensor σ̌ of Fitts [2].) The quantities gi represent
species specific forces per unit mass of the ith component. Eq(16) can be converted to a
differential equation by the same procedure used above to obtain either of the forms

∂(ρv)

∂t
+∇ · (ρvv + m̌) =

κ∑
i=1

ρigi (18)

ρ
Dv

Dt
+∇ · m̌ =

κ∑
i=1

ρigi. (19)

3 Energy Balance

We write the equation for energy balance in the form

d

dt

∫
V
(ev+

1

2
ρv2) d3x+

∫
A
[(ev+

1

2
ρv2)v+je]·n̂ d2x = −

∫
A

v·m̌·n̂ d2x+
∫
V

κ∑
i=1

ρivi·gi d
3x (20)

where ev is the density of internal energy, 1
2
ρv2 is the density of kinetic energy, and je is an

energy flux that is consistent with the form of the work terms, due to surface forces and
external forces, that appear on the right. The corresponding differential equations are

∂(ev + 1
2
ρv2)

∂t
+∇ ·

[
(ev +

1

2
ρv2)v + je + m̌ · v

]
=

κ∑
i=1

ρivi · gi (21)

ρ
D(em + 1

2
v2)

Dt
+∇ · (je + m̌ · v) =

κ∑
i=1

ρivi · gi. (22)

These equations for overall energy balance can be simplified by subtracting an equation
for the balance of mechanical energy, obtained by taking the dot product of v with an
equation for momentum balance. Thus Eq(19) leads to

ρ
D(1

2
v2)

Dt
+∇ · (v · m̌)− m̌:∇v =

κ∑
i=1

ρiv · gi (23)
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where the scalar

m̌:∇v =
3∑

α,β=1

mαβ
∂vα

∂xβ

= p∇ · v + τ̌ :∇v (24)

where α and β denote cartesian indices. Subtraction of Eq(23) from Eq(21) and Eq(22)
then leads, in view of Eq(13), to the results

∂ev

∂t
+∇ · (evv + je) = −p∇ · v − τ̌ :∇v +

κ∑
i=1

ji · gi (25)

ρ
Dem

Dt
+∇ · je = −p∇ · v − τ̌ :∇v +

κ∑
i=1

ji · gi (26)

where the terms on the right-hand side represent, respectively, the work done by pressure
on a compressible fluid, the work done by viscous forces, and the work done by species
specific external forces on diffusing species. Note that the latter term would vanish (be-
cause the diffusive fluxes sum to zero, see Eq(9)) for the case in which gi is independent
of i, e.g., for only a gravitational force for which gi = g, the acceleration due to gravity.

4 Identification of Fluxes

An alternative way of writing Eq(20) would be

d

dt

∫
V
(ev +

1

2
ρv2) d3x +

∫
A
[(ev +

1

2
ρv2)v + j′e] · n̂ d2x =

−
∫
A
(v · τ̌ + p

κ∑
i=1

V̄iρivi) · n̂ d2x +
∫
V

κ∑
i=1

ρivi · gi d
3x (27)

where the quantities

V̄i :=

(
∂V

∂Mi

)
p,T,M ′i

(28)

are partial specific volumes (here, Mi is the mass of the ith component and M ′
i stands for

the set of all masses other than Mi) and j′e is a new energy flux that we shall proceed to
relate to je. Indeed, we show below (see Eq(42)) that the integral over A on the right-hand
side of Eq(27) is a more appropriate form of the external work done by surface forces for
a multicomponent system than the integral over A on the right-hand side of Eq(20).

We first relate j′e to je as follows: We note first that the partial specific volumes obey
the equation

κ∑
i=1

V̄iρi = 1 (29)
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which allows us to write

p
κ∑

i=1

V̄iρivi = pv +
κ∑

i=1

pV̄i ji. (30)

Thus, the energy fluxes may be related by the equation

j′e = je −
κ∑

i=1

pV̄i ji. (31)

Below, we shall deduce, in agreement with Fitts [2], that

je = qc +
κ∑

i=1

H̄i ji. (32)

where qc is a flux of conducted heat (the same as the “second-law heat flux” which Fitts [2]
calls q and which BSL [1] call q(c) + q(x)) and the H̄i are partial specific enthalpies. By
making use of the relation H̄i = Ēi+pV̄i, where Ēi are the partial specific internal energies,
we can combine Eq(31) and Eq(32) to obtain

j′e = qc +
κ∑

i=1

Ēi ji (33)

which is exactly what one would expect, i.e., the energy flux should result from the sum of
the conducted energy and the energy that is transported by diffusion. On the other hand,
Fitts [2], page 27, writes

je = q′ +
κ∑

i=1

Ēi ji (34)

which requires the definition of a heat flux q′ that enters the first law of thermodynamics
and is “not associated with the flow of matter.” This requires

q′ = qc +
κ∑

i=1

pV̄i ji (35)

which is awkward because it relates two fluxes that are presumably purely conductive by
terms that do involve the flow of matter. We contend that j′e is a more appropriate internal
energy flux than je because of the manner in which it can be decomposed (see Eq(33)) into
a conductive heat flux that enters the entropy flux (see Eq(52)) and an internal energy
flux associated with diffusion. The fluxes je and j′e differ only by the term in Eq(31) that
contains the partial specific volumes, and we agree with Fitts [2], page 29, that this term
represents “the work associated with the volume increment produced by diffusion of the
various components into the volume element at constant temperature and pressure.”

We now proceed to justify our identification of fluxes and external work for a multi-
component system. We begin with the fundamental equation of Gibbs

dE = TdS − pdV +
κ∑

i=1

µidMi (36)
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where the quantities µi are the intrinsic chemical potentials. For simplicity, we assume
that there are no viscous forces, external forces or chemical reactions. For a closed system,
we would have dMi = 0 and for reversible changes, we would identify δQ = TdS as the
heat added to the system and δW = pdV as the work done by the system. For an open
system, we can use the relation µi = Ēi + pV̄i − T S̄i to rewrite Eq(36) in the form

dE = T (dS −
κ∑

i=1

S̄idMi)− p(dV −
κ∑

i=1

V̄idMi) +
κ∑

i=1

ĒidMi (37)

and for reversible changes make the identification

δQ = T (dS −
κ∑

i=1

S̄idMi) (38)

δW = p(dV −
κ∑

i=1

V̄idMi). (39)

This identification 1 is made with the further understanding that all changes are such that
there is no net momentum change to the system under consideration, consistent with the
fact that E is the internal energy in Eq(36).

In order to sharpen the connection to the mass fluxes, and to display a volume change
that is not equal to zero, we let the boundary of this system move along its normal in time
δt by an amount vB · n̂ so that

dV =
∫
A

vB · n̂ d2x δt. (40)

Similarly, we express the mass that enters the system in time δt in the form

dMi = −
∫
A

ρi(vi − vB) · n̂ d2x δt (41)

so that

δW =
∫
A

p

[
vB +

κ∑
i=1

V̄iρi(vi − vB)

]
· n̂ d2x δt

=
∫
A

p
κ∑

i=1

V̄iρivi · n̂ d2x δt (42)

=
∫
A

p(v +
κ∑

i=1

V̄i ji) · n̂ d2x δt (43)

1The form of the work given by Eq(39) is easy to interpret for the case of isothermal expansion of
an ideal gas by means of a piston that is completely permeable with respect to component i, having
constant partial pressure pi, but impermeable to the other components. By elementary considerations,
δW = (p− pi)dV . For such a gas, piV = (RT/mi)Mi where mi is the molecular weight of component i,
so pidV = (RT/mi)dMi. But V̄i = RT/(p mi), so pidV = pV̄idMi and therefore δW = p(dV − V̄idMi). If
the piston were completely permeable to all components, it would not experience any force, resulting in
δW = 0.
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where p and the V̄i are taken inside the integrals consistent with the fact that Eq(36) is
applicable only to small changes of a homogeneous system. We note that the rate of doing
work by pressure given by Eq(42) is in agreement with the corresponding term on the
right-hand side of Eq(27). Similarly, in time δt, we have

κ∑
i=1

ĒidMi = −
∫
A

Ēiρi(vi − vB) · n̂ d2x δt

=
∫
A
(evvB −

κ∑
i=1

Ēiρivi) · n̂ d2x δt

= −
∫
A

[
ev(v − vB) +

κ∑
i=1

Ēi ji

]
· n̂ d2x δt (44)

and
δQ = −

∫
A

qc · n̂ d2x δt (45)

where qc is the flux of conducted heat and where we have used the relation
∑κ

i=1 Ēiρi =
ev, an equation of the form that is generally applicable to partial specific quantities.
Substitution of Eqs(43, 44 and 45) into Eq(37) then leads to the result∫

V
ρ
Dem

Dt
d3x +

∫
A

[
qc +

κ∑
i=1

(Ēi + pV̄i)ji

]
· n̂ d2x = −

∫
A

pv · n̂ d2x (46)

where we have used the relation

d

dt

∫
V

ev d3x +
∫
A

ev(v − vB) · n̂ d2x =
∫
V

ρ
Dem

Dt
d3x (47)

which is applicable for a moving boundary. Converting Eq(46) to a differential equation
gives

ρ
Dem

Dt
+∇ ·

[
qc +

κ∑
i=1

H̄i ji

]
= −p∇ · v (48)

where, again, p is treated as a constant consistent with Eq(36).2 Comparison of Eq(48)
with Eq(26) for the case of no viscosity and no external forces then leads to Eq(32). Thus
the resulting energy flux given by Eq(33) is seen to be compatible with the expression for
the work given by Eq(42) and the rate of doing work that appears on the right hand side
of Eq(27).

We can apply the same methodology as above to Eq(38) in order to identify the entropy
flux. Thus

dS =
δQ

T
+

κ∑
i=1

S̄idMi

= −
∫
A

[
sv(v − vB) +

qc

T
+

κ∑
i=1

S̄i ji

]
· n̂ d2x δt (49)

2In Eq(36) E is the internal energy and no change in the overall kinetic energy is taken into account.
Therefore there can be no net body force on the system which requires ∇p = 0.
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which leads to ∫
V

ρ
Dsm

Dt
d3x +

∫
A

[
qc

T
+

κ∑
i=1

S̄i ji

]
· n̂ d2x = 0 (50)

and the corresponding differential form

ρ
Dsm

Dt
+∇ ·

[
qc

T
+

κ∑
i=1

S̄i ji

]
= 0 (51)

where the zero on the right-hand side results from the fact that we are considering here a
reversible change. We thus identify the entropy flux

js =
qc

T
+

κ∑
i=1

S̄i ji. (52)

4.1 flux identification with chemical reactions

It is instructive to include chemical reactions in our treatment to identify fluxes because
in this case

dMi = dM int
i + dM ext

i (53)

where
dM int

i =
∫
V

ri d
3x δt (54)

is the change in mass of component i due to chemical reactions and

dM ext
i = −

∫
A

ρi(vi − vB) · n̂ d2x δt (55)

is the change in mass of component i due to a flux through the boundary, which has the
same form as Eq(41). Thus Eq(37) can be written in the form

dE = T (dS −
κ∑

i=1

S̄idM ext
i +

κ∑
i=1

µi

T
dM int

i )− p(dV −
κ∑

i=1

V̄idM ext
i ) +

κ∑
i=1

ĒidM ext
i (56)

where the grouping of terms is related to the following argument: For a closed system,
dM ext

i = 0 and we assert that the internal energy will be unchanged if no work is done and
no heat is added to the system. In other words, the internal energy is defined such that
it is unchanged by chemical reaction, which can at most change from one kind of internal
energy (say, the potential energy of certain chemical bonds) to another (say, the potential
energy of other chemical bonds or internal kinetic energy). Thus for such a reaction in a
closed isolated system, Eq(56) would yield

dSreact = −
κ∑

i=1

µi

T
dM int

i (57)

for the internal entropy production due to chemical reaction. This interpretation is in
agreement with that of Prigogine [6], page 23, Eqs(3.29 - 3.30).
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In the general case, we would therefore replace Eq(38) and Eq(39) for reversible ex-
changes with the environment by

δQ = T (dS −
κ∑

i=1

S̄idM ext
i +

κ∑
i=1

µi

T
dM int

i ) (58)

δW = p(dV −
κ∑

i=1

V̄idM ext
i ). (59)

Then by using the same methodology as above, we again obtain Eq(48) but Eq(51) is
replaced by

ρ
Dsm

Dt
+∇ ·

[
qc

T
+

κ∑
i=1

S̄i ji

]
= −

κ∑
i=1

µiri

T
. (60)

5 Entropy Production

We write the equation for entropy balance in the form

d

dt

∫
V

sv d3x +
∫
A
(svv + js) · n̂ d2x =

∫
V

ṡprod
v d3x (61)

where sv is the density of entropy, js is an entropy flux that was identified in section 4,
and ṡprod

v is the volumetric rate of entropy production, assumed to be positive locally for
a natural process. The corresponding differential equations are

∂sv

∂t
+∇ · (svv + js) = ṡprod

v (62)

ρ
Dsm

Dt
+∇ · js = ṡprod

v . (63)

In order to calculate the volumetric entropy production ṡprod
v , we employ Eq(36) and

its (Gibbs-Duhem) integrated form E = TS − pV +
∑κ

i=1 µiMi to deduce the equation

dem = Tdsm − pdvm +
κ∑

i=1

µidωi (64)

where vm = 1/ρ is the specific volume. We assume that Eq(64) holds locally, even in an
inhomogeneous system. We can therefore apply it to a change of the form D to obtain

Dsm

Dt
=

1

T

Dem

Dt
− p

Tρ2

Dρ

Dt
−

κ∑
i=1

µ1

T

Dωi

Dt
(65)

which we can use to evaluate the left-hand side of Eq(63) with the aid of Eq(12), Eq(15)
and Eq(26) and the definitions of the fluxes. The result can be written in the forms

ṡprod
v = je · ∇

(
1

T

)
−

κ∑
i=1

ji ·
[
∇

(
µi

T

)
− gi

T

]
− τ̌ :∇v

T
−

κ∑
i=1

µiri

T
(66)

ṡprod
v = (je −

κ∑
i=1

µi ji) · ∇
(

1

T

)
−

κ∑
i=1

ji · (∇µi − gi)

T
− τ̌ :∇v

T
−

κ∑
i=1

µiri

T
(67)
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where the four terms on the right represent the rate of entropy production associated,
respectively, with energy flux, diffusive fluxes, viscosity, and chemical reactions. Eq(67)
has the same form as Eq(57.7) of Landau and Lifshitz [5] for the simple case of a binary
fluid that they treat. By using Eq(32) and Eq(52), we can write the energy flux that
appears on the the left-hand side of Eq(67) in the form

je −
κ∑

i=1

µi ji = qc +
κ∑

i=1

T S̄i ji = T js (68)

which allows us to rewrite Eq(67) in the form

ṡprod
v = −js · ∇T

T
−

κ∑
i=1

ji ·
[∇µi

T
− gi

T

]
− τ̌ :∇v

T
−

κ∑
i=1

µiri

T
(69)

which is in agreement with one of the forms given by de Groot and Mazur [4], page 27,
Eq(28).

We can further isolate the role of temperature gradients by introducing the operator
∇T which is the gradient operator at constant temperature. Then for the variable set T ,
p, ωi we have [3]

∇µi = ∇T µi +

(
∂µi

∂T

)
∇T

= ∇T µi − S̄i∇T

= ∇T µi + T 2S̄i∇
(

1

T

)
. (70)

Thus we can write the entropy production in the forms

ṡprod
v = qc · ∇

(
1

T

)
−

κ∑
i=1

ji · (∇T µi − gi)

T
− τ̌ :∇v

T
−

κ∑
i=1

µiri

T
(71)

ṡprod
v =

1

T

[
−qc · ∇(ln T )−

κ∑
i=1

ji · (∇T µi − gi)− τ̌ :∇v −
κ∑

i=1

µiri

]
(72)

in which the “driving force” of a temperature gradient is conjugate to the purely conductive
heat flux qc.

6 External Potentials

In event that the external forces can be expressed in the form

gi = −∇φi, (73)

we can write

ρivi · gi = −ρivi · ∇φi

= −∇ · (φiρivi) + φi · ∇(ρivi)

= −∇ · (φiρiv + φi ji) + φiri −
∂(ρiφi)

∂t
+ ρi

∂φi

∂t
(74)
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where Eq(2) has been used. We introduce the potential energy per unit mass, ψ :=∑κ
i=1 ωiφi of de Groot and Mazur [4], page 16, and then sum Eq(74) over i to obtain

∂(ρψ)

∂t
−

κ∑
i=1

ρi
∂φi

∂t
+∇ · (ρψv +

κ∑
i=1

φi ji) = −
κ∑

i=1

ρigi · v −
κ∑

i=1

ji · gi +
κ∑

i=1

φiri (75)

which is in agreement with Groot and Mazur (their Eq(26), page 16) for φi independent
of time. Then if the potentials φi are independent3 of time, we can rewrite Eq(21) and
Eq(22) in the forms

∂etot
v

∂t
+∇ ·

[
(etot

v v + je +
κ∑

i=1

φi ji + m̌ · v)

]
=

κ∑
i=1

φiri (76)

ρ
Detot

m

Dt
+∇ · (je +

κ∑
i=1

φi ji + m̌ · v) =
κ∑

i=1

φiri. (77)

where

etot
v = ev + ρψ +

1

2
ρv2 (78)

etot
m = em + ψ +

1

2
v2 (79)

are total energies per unit volume and per unit mass, respectively. The term
∑κ

i=1 φiri

represents the potential energy associated with the creation of species by chemical reac-
tion; it would vanish, due to Eq(10), for φi independent of i, as would be the case for
gravitational forces for which φi = gz. Eq(76) and Eq(77) should agree with Eq(31) of
de Groot and Mazur [4], page 17, but they do not because de Groot and Mazur have
dropped the term due to potential energy created by chemical reactions on the right-hand
sides of their Eqs(28-31). On the other hand, this term due to chemical reactions cancels
exactly when they obtain their Eq(34), page 18, which is in agreement with our Eq(25)
and Eq(26). We will see shortly that the external potentials lead to consideration of total
chemical potentials.

The introduction of potentials for the external forces does not simplify Eq(25) and
Eq(26) in any significant way because the term

∑κ
i=1 ji ·gi already represents the contribu-

tion of external forces to the internal energy. On the other hand, the equations for entropy
production take on a transparent form if we introduce total chemical potentials4 defined
by

µtot
i = µi + φi. (80)

Then Eq(66) and Eq(67) can be written in the forms

ṡprod
v = (je +

κ∑
i=1

φi ji) · ∇
(

1

T

)
−

κ∑
i=1

ji · ∇
(

µtot
i

T

)
− τ̌ :∇v

T
−

κ∑
i=1

µiri

T
(81)

3In the unusual case that the φi depend on time, it is necessary to add a term
∑κ

i=1 ρi
∂φi

∂t to the
right-hand sides of Eq(76) and Eq(77).

4Note that these total chemical potentials do not include kinetic energy of the local center of mass,
which is included in etot

v and etot
m .
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ṡprod
v = (je −

κ∑
i=1

µi ji) · ∇
(

1

T

)
−

κ∑
i=1

ji · ∇µtot
i

T
− τ̌ :∇v

T
−

κ∑
i=1

µiri

T
. (82)

In the case that the external potentials φi are independent of T , we can also express Eq(71)
and Eq(72) in the forms

ṡprod
v = qc · ∇

(
1

T

)
−

κ∑
i=1

ji · ∇T µtot
i

T
− τ̌ :∇v

T
−

κ∑
i=1

µiri

T
(83)

ṡprod
v =

1

T

[
−qc · ∇(ln T )−

κ∑
i=1

ji · ∇T µtot
i − τ̌ :∇v −

κ∑
i=1

µiri

]
(84)

where the latter form is in agreement with Fitts [2], page 31, Eq(3-38).

7 Constitutive Laws for Fluxes and Onsager Symme-

try

Following standard procedure in irreversible thermodynamics, one can postulate linear
constitutive laws between the generalized forces and fluxes that appear in the various
forms for the local rate of entropy production, ṡprod, given above. We concentrate here
on only the energy flux and the diffusive fluxes of the components, which are tensors of
rank one. According to Curie’s Principle (see [4], page 31 or [2], page 35), these fluxes
can only couple to forces that differ in tensoral rank by an even number. Therefore, the
energy and diffusive fluxes do not couple to the generalized forces associated with chemical
reactions or viscosity, but do couple to the generalized forces associated with one another.
Corresponding to Eq(66), we therefore postulate

ji = −
κ∑

j=0

Bij

[
∇

(
µj

T

)
− gj

T

]
, (i = 0, . . . , κ) (85)

where
j0 := je, µ0 = −1, g0 = 0. (86)

Under conditions for which there are no external magnetic fields, we can follow the pro-
cedure of Sekerka and Mullins [3] to show, for these fluxes, forces and reference frames,
that

Bij = Bji, (i, j = 1, . . . , κ), (87)

which is the so-called Onsager symmetry. We note also that the matrix Bij is singular
because

κ∑
i=1

Bij = 0, (j = 1, . . . , κ), (88)

which arises because the κ mass fluxes with respect to the center of mass are not indepen-
dent (see Eq(9)) but all κ + 1 of the forces are independent.
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As shown explicitly by Sekerka and Mullins [3], one can transform Eq(85) to obtain
other forms of the forces and fluxes that are also related by a transport matrix that has
the Onsager symmetry. One such choice is related to the entropy production in the form
of Eq(72) and yields

j′i = −B̂i0∇(ln T )−
κ∑

j=1

B̂ij(∇T µj − gj), (i = 0, . . . , κ) (89)

or for the case of external potentials independent of time and temperature,

j′i = −B̂i0∇(ln T )−
κ∑

j=1

B̂ij∇T µtot
j , (i = 0, . . . , κ) (90)

which corresponds to Eq(84) for the entropy production, where

j′0 := qc, j′i := ji, (i = 1, . . . , κ). (91)

Here,
B̂ij = B̂ji, (i, j = 1, . . . , κ) (92)

where
κ∑

i=1

B̂ij = 0, (j = 1, . . . , κ) (93)

is a singular, symmetric matrix that is related linearly to Bij by

B̂ij =
1

T
Bij, (i, j = 1, . . . , κ)

B̂0j =
1

T

(
B0j −

κ∑
k=1

H̄kBkj

)
(j = 1, . . . , κ)

B̂i0 =
1

T

(
Bi0 −

κ∑
k=1

H̄kBik

)
(j = 1, . . . , κ)

B̂00 =
1

T

Bi0 −
κ∑

k=1

H̄k(B0k + Bk0) +
κ∑

k,m=1

H̄kBkmH̄m

 . (94)

The properties of B̂ij follow from those of Bij, and Eqs(89,90,91,92,93) are in agreement
with Fitts [2], page 44.

We can take advantage of Eq(92) and Eq(93) to rewrite Eq(89) and Eq(90) in the
forms

j′i = −B̂i0∇(ln T )−
κ−1∑
j=1

B̂ij

[
∇T (µj − µκ)− (gj − gκ)

]
, (i = 0, . . . , κ− 1) (95)

j′i = −B̂i0∇(ln T )−
κ−1∑
j=1

B̂ij∇T (µtot
j − µtot

κ ), (i = 0, . . . , κ− 1) (96)
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where the submatrix B̂ij, (i, j = 1, . . . , κ− 1) is symmetric and not necessarily singular.

Since the symmetric submatrix B̂ij has real elements, it can be diagonalized by an
orthogonal similarity transformation and will have real eigenvalues. Since the determinant
is preserved by such a transformation and is also the product of the eigenvalues, it follows
that none of the eigenvalues are zero if B̂ij is nonsingular. Therefore, in order to obtain a
positive definite local rate of entropy production, ṡprod > 0, for any nonzero driving force,
it is necessary for the eigenvalues of B̂ij to be positive definite.

8 Gravity as the Only External Force

For the case that gravity is the only5 external force, we have

gi = g, µext
i = µi + gz, (i, j = 1, . . . , κ) (97)

where g is the acceleration due to gravity, g is its magnitude, and z is distance measured
antiparallel to gravity from some suitable reference plane. It follows immediately that all
explicit reference to an external force drops out6 of Eq(95) and Eq(96), either of which can
now be written

j′i = −B̂i0∇(ln T )−
κ−1∑
j=1

B̂ij∇T (µj − µκ), (i = 0, . . . , κ− 1) (98)

which contains only differences of the intrinsic chemical potentials. Yet we know from
the work of Gibbs [7], page 282, that the conditions for equilibrium for a multicomponent
system in a gravitational field require

µext
i = µi + gz = uniform for each i, (i = 1, . . . , κ). (99)

How can this be possible if only the intrinsic chemical potentials appear in Eq(98)?
The answer is that the intrinsic chemical potentials depend on pressure as well as

composition, and their dependence on pressure carries the “information” that gravity is
present. This can be demonstrated explicitly by making use of the differential form

ρ
κ∑

i=1

ωi∇µi = ∇p− sv∇T (100)

of the Gibbs-Duhem equation. For equilibrium, T must be uniform and all fluxes must
vanish, which from Eq(98) requires that7

∇µ1 = ∇µ2 = · · · = ∇µκ. (101)

5Similar considerations would apply to other forces per unit mass that are independent of species.
6The sum

∑κ
i=1 ji · ∇T µtot

i that appears in Eq(83) and Eq(84) can, in view of Eq(9), be written in the
form

∑κ−1
i=1 ji ·∇T (µtot

i −µtot
κ ), so the entropy production is also independent of an external force per unit

mass that is independent of species.
7For constant T , there is no distinction between ∇ and ∇T .
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Substitution of Eq(101) into Eq(100) then gives

ρ∇µi = ∇p, (i = 1, . . . , κ) (102)

which in view of the equation ∇p = ρg for mechanical equilibrium (required since there
is no fluid flow at equilibrium) shows that

∇µi = g = −g∇z, (i = 1, . . . , κ) (103)

which integrates to give Eq(99).
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